Spark的核心是建立在统一的抽象RDD之上,使得Spark的各个组件可以无缝进行集成,在同一个应用程序中完成大数据计算任务。RDD的设计理念源自AMP实验室发表的论文《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》。
Spark入门 第一章 第二节 Spark运行架构
基本概念
在具体讲解Spark运行架构之前,需要先了解几个重要的概念:
- RDD:是弹性分布式数据集(Resilient Distributed Dataset)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型;
- DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系;
- Executor:是运行在工作节点(Worker Node)上的一个进程,负责运行任务,并为应用程序存储数据;
- 应用:用户编写的Spark应用程序;
- 任务:运行在Executor上的工作单元;
- 作业:一个作业包含多个RDD及作用于相应RDD上的各种操作;
- 阶段:是作业的基本调度单位,一个作业会分为多组任务,每组任务被称为“阶段”,或者也被称为“任务集”。
使用Java开发高性能网站需要注意的那些事
ZooKeeper经典应用场景
转载自:http://rdc.taobao.com/team/jm/archives/1232
这篇文章写的非常贴近实际,比官方好!
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利用其提供的一系列API接口(或者称为原语集),摸索出来的典型使用方法。因此,也非常欢迎读者分享你在ZK使用上的奇技淫巧。